Appendix A — Random Variable Summary

A.1 RV summary

\(X\) Binomial Geometric Poisson Discrete Uniform Normal (Continuous) Uniform Exponential
Type Discrete Discrete Discrete Discrete Continuous Continuous Continuous
Parameters \(n\), \(p\) \(p\) \(\lambda\) \(a\), \(b\) \(\mu\), \(\sigma^2\) \(a\), \(b\) \(\lambda\)
Description Number of successes in \(n\) independent trials with \(p\) probability of success for each trial
(Note: Bernoulli is just Binomial with \(n\!=\!1\))
Number of failures BEFORE the first success while independently repeating trial with \(p\) probability of success Count of number of occurrences of an event with constant mean rate \(\lambda\) that’s independent of previous occurrences \(n\)-sided fair die Normal distributions usually arise from CLT (i.e. they’re processes that are the sum of many smaller independent processes) Generalizing \(n\)-sided fair die to a continuous interval Waiting time between Poisson events
Outcomes \(0,1,\ldots,n\) \(0,1,\ldots\) \(0,1,\ldots\) \(a,a\!+\!1,\ldots,b\) \((-\infty,\infty)\) \([a,b]\) \([0,\infty)\)
PDF/PMF at \(k\) \({n\choose k}p^k(n-p)^{n-k}\) \(p(1-p)^k\) \(\frac{\lambda^ke^{-\lambda}}{k!}\) \(\frac1{b-(a-1)}\) \(\frac1{\sigma\sqrt{2\pi}}e^{-\frac12\left(\frac{x-\mu}\sigma\right)^2}\) \(\frac1{b-a}\) \(\lambda e^{-\lambda x}\)
\(P(X\le k)\) \(1-(1-p)^{\lfloor k\rfloor+1}\) \(\frac{\lfloor k\rfloor-(a-1)}{b-(a-1)}\) \(\frac{x-a}{b-a}\) \(1-e^{-\lambda x}\)
Mean \(np\) \(\frac{1-p}p\) \(\lambda\) \(\frac{a+b}2\) \(\mu\) \(\frac{a+b}2\) \(\frac1\lambda\)
Variance \(np(1-p)\) \(\frac{1-p}{p^2}\) \(\lambda\) \(\frac{(b-(a-1))^2-1}{12}\) \(\sigma^2\) \(\frac{(b-a)^2}{12}\) \(\frac1{\lambda^2}\)
R functions dbinom, pbinom, qbinom, rbinom dgeom, pgeom, qgeom, rgeom dpois, ppois, qpois, rpois sample dnorm, pnorm, qnorm, rnorm dunif, punif, qunif, runif dexp, pexp, qexp, rexp