Appendix A — Random Variable Summary
A.1 RV summary
| \(X\) | Binomial | Geometric | Poisson | Discrete Uniform | Normal | (Continuous) Uniform | Exponential |
|---|---|---|---|---|---|---|---|
| Type | Discrete | Discrete | Discrete | Discrete | Continuous | Continuous | Continuous |
| Parameters | \(n\), \(p\) | \(p\) | \(\lambda\) | \(a\), \(b\) | \(\mu\), \(\sigma^2\) | \(a\), \(b\) | \(\lambda\) |
| Description | Number of successes in \(n\) independent trials with \(p\) probability of success for each trial (Note: Bernoulli is just Binomial with \(n\!=\!1\)) |
Number of failures BEFORE the first success while independently repeating trial with \(p\) probability of success | Count of number of occurrences of an event with constant mean rate \(\lambda\) that’s independent of previous occurrences | \(n\)-sided fair die | Normal distributions usually arise from CLT (i.e. they’re processes that are the sum of many smaller independent processes) | Generalizing \(n\)-sided fair die to a continuous interval | Waiting time between Poisson events |
| Outcomes | \(0,1,\ldots,n\) | \(0,1,\ldots\) | \(0,1,\ldots\) | \(a,a\!+\!1,\ldots,b\) | \((-\infty,\infty)\) | \([a,b]\) | \([0,\infty)\) |
| PDF/PMF at \(k\) | \({n\choose k}p^k(n-p)^{n-k}\) | \(p(1-p)^k\) | \(\frac{\lambda^ke^{-\lambda}}{k!}\) | \(\frac1{b-(a-1)}\) | \(\frac1{\sigma\sqrt{2\pi}}e^{-\frac12\left(\frac{x-\mu}\sigma\right)^2}\) | \(\frac1{b-a}\) | \(\lambda e^{-\lambda x}\) |
| \(P(X\le k)\) | \(1-(1-p)^{\lfloor k\rfloor+1}\) | \(\frac{\lfloor k\rfloor-(a-1)}{b-(a-1)}\) | \(\frac{x-a}{b-a}\) | \(1-e^{-\lambda x}\) | |||
| Mean | \(np\) | \(\frac{1-p}p\) | \(\lambda\) | \(\frac{a+b}2\) | \(\mu\) | \(\frac{a+b}2\) | \(\frac1\lambda\) |
| Variance | \(np(1-p)\) | \(\frac{1-p}{p^2}\) | \(\lambda\) | \(\frac{(b-(a-1))^2-1}{12}\) | \(\sigma^2\) | \(\frac{(b-a)^2}{12}\) | \(\frac1{\lambda^2}\) |
| R functions | dbinom, pbinom, qbinom, rbinom |
dgeom, pgeom, qgeom, rgeom |
dpois, ppois, qpois, rpois |
sample |
dnorm, pnorm, qnorm, rnorm |
dunif, punif, qunif, runif |
dexp, pexp, qexp, rexp |